Metabolic regulation and overproduction of primary metabolites

نویسندگان

  • Sergio Sanchez
  • Arnold L. Demain
چکیده

Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well-known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and important target genes and to quantify metabolic activities necessary for further strain improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network rigidity and metabolic engineering in metabolite overproduction.

In order to enhance the yield and productivity of metabolite production, researchers have focused almost exclusively on enzyme amplification or other modifications of the product pathway. However, overproduction of many metabolites requires significant redirection of flux distributions in the primary metabolism, which may not readily occur following product deregulation because metabolic pathwa...

متن کامل

مکانیسم مولکولی دیس‌لیپیدمی متابولیک در وضعیتهای مقاومت به انسولین

Insulin resistant states are emerging rapidly and lots of efforts have gone into understanding their pathogenesis and major metabolic consequences. Hypertriglyceridemia, a major complication of this metabolic syndrome, seems to be caused by overproduction of lipoproteins (LPs) containing apo B that are rich in triglycerides. Some in vitro and in vivo models have been introduced so as to under...

متن کامل

Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants.

Overproduction of multidrug resistance (MDR) efflux pumps is involved in the resistance to a wide range of compounds in bacteria. These determinants extrude antibiotics, but also bacterial metabolites like quorum-sensing signals. Non-regulated extrusion of bacterial metabolites might produce a metabolic burden, so that MDR-overproducing mutants could have a reduced fitness when compared with th...

متن کامل

Nephrotoxicity of Isosorbide Dinitrate and Cholestasis in Rat: The Possible Role of Nitric Oxide

Background: Nitric oxide (NO), a major chemical form of endothelium-derived relaxing factor and an important regulator of vascular tone, is released by endothelial cells. The role of NO is not restricted to the vascular system, and it participates in the regulation of renal hemodynamics and renal excretory function. There are increasing evidences indicating that the elevated levels of NO play a...

متن کامل

Time-Resolved Transcriptomics and Constraint-Based Modeling Identify System-Level Metabolic Features and Overexpression Targets to Increase Spiramycin Production in Streptomyces ambofaciens

In this study we have applied an integrated system biology approach to characterize the metabolic landscape of Streptomyces ambofaciens and to identify a list of potential metabolic engineering targets for the overproduction of the secondary metabolites in this microorganism. We focused on an often overlooked growth period (i.e., post-first rapid growth phase) and, by integrating constraint-bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008